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Abstract:  Drilling induced fractures are generated when excessive stresses 
around a borehole cause tensile failure of the wellbore wall. If stress 
concentrations are great enough, compressive failures can form in the 
region surrounding the wellbore, leading to wellbore breakout, and 
the potential compromise of wellbore integrity. Another category of 
induced fracture networks are hydraulically induced fractures, which 
are generated by the injection of pressurized fl uids into the subsurface. 
Overlapping induced fracture networks between collocated wellbores 
may increase pathways in the subsurface, and create the potential for 
unwanted fl uid leakage. The generation of induced fractures is greatly 
dependent upon the structural and geological characteristics. Probabilistic-
based simulations are often used to model fracture systems. Several 
methods for modeling local fracture networks have been proposed in the 
literature. These models often involve the generation of randomly located 
fractures, and may have limited capabilities for honoring engineered 
fractures such as induced fracture networks. We present a graph theoretic 
approach for identifying geospatial regions and wellbores at increased 
risk for subsurface connectivity based on wellbore proximity and local 
lithologic characteristics. The algorithm is coded in Matlab, and transforms 
3 dimensional geospatial data to graph form for rapid computation of 
pairwise and topological relationships between wellbores (nodes), and 
the spatial radius of induced fractures (edges). Induced fracture reaches 
are represented as cylinders with a radius r, based on literature derived 
ranges for fracture lengths for different lithologies (e.g. shale, sandstone). 
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The topological algorithm is compared to a standard graph-based k-nearest 
neighbor algorithm to demonstrate the value of incorporating lithologic 
attributes in graph-based fracture models. The algorithms are applied to 
two scenarios using Pennsylvania wellbore and lithologic data: a subset 
of data from the Bradford fi eld, as well as a known leakage scenario in 
Armstrong County. The topological algorithm presented in this paper can 
be used to complement existing fracture models to better account for the 
reach of induced fractures, and to identify spatial extents at increased risk 
for unwanted subsurface connectivity. As a result, the method presented 
in this paper can be part of a cumulative strategy to reduce uncertainty 
inherent to combined geologic and engineered systems. The model output 
provides valuable information for industry to develop environmentally 
safe drilling and injection plans; and for regulators to identify 
specifi c wellbores at greater risk for leakage, and to develop targeted, 
science-based monitoring policies for higher risk regions.

Keywords:  Graph theory, spatial analysis, hydraulic fracturing

1 Background and Rationale

Commercial hydrocarbon drilling began as early as the 1800s in West Virginia 
and Pennsylvania [1]. Since then, human engineering of the subsurface has 
expanded worldwide to include gas storage [2]; CO2 injection [3]; unconven-
tional resource exploration [4]; and injection of hazardous waste [5]. As the 
character and degree of subsurface activities has expanded, it has become 
increasingly important to develop methods and techniques capable of address-
ing the interactions between engineered features and local geology. Information 
provided by such techniques is of critical value to both industry and regulators: 
leakage via wellbores and fracture networks is a documented concern [6], and 
the data provided by such methods is imperative for the development of envi-
ronmentally safe drilling and injection plans, as well as science-based monitor-
ing and plugging plans for regions (or particular wellbores) at greater risk of 
connectivity and leakage.

Engineered and induced fractures, such as drilling induced fractures (DIFs) and 
hydraulically induced fractures (HIFs), are important phenomena that can occur 
when a wellbore is drilled. DIFs are generated when stresses around a borehole 
are in excess of those required to cause tensile failure of the wellbore wall [7]. If 
stress concentrations are great enough, compressive failures can form in the region 
surrounding the wellbore, leading to wellbore breakout, and the potential loss 
of wellbore integrity [8]. HIFs are pressure induced fractures that are generated 
when fl uid is injected at high pressure into subsurface formations. If induced frac-
ture networks around collocated wellbores intersect, there may be an increased 
 likelihood of communication between wellbores, and the potential for unwanted 
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fl uid leakage between such networks. This is particularly of concern for older, 
structurally unstable wellbores, which may lack adequate casing or cementing 
necessary for zonal isolation [9]. Furthermore, wellbore spatial densities are likely 
to be relatively high in regions with historical drilling activity: Before regulations 
requiring minimum wellbore spacing were implemented, it was a common prac-
tice to drill multiple wellbores in close proximity (Figure 1). Furthermore, regions 
with extensive drilling histories likely have higher wellbore densities as a result of 
the multiple centuries of exploration of resources in those regions [1].

The generation of induced fractures is greatly dependent upon the structural 
and lithological characteristics of local geology, which is often diffi cult to accu-
rately characterize in the absence of expensive geophysical surveys. Consequently, 
probabilistic-based simulations are often used to model such fracture systems. 
Several methods for modeling local fracture networks have been proposed in the 
literature [10–12]. These models often involve the generation of randomly located 
fractures, with varying degrees of user defi ned connectivity controls. Because of 
the importance of wellbore locations; spatial densities; and the potential for over-
lapping induced fracture networks to create fl uid fl ow pathways, it is  important 
to account for the probable radius of infl uence of induced fractures around a 
wellbore, as determined by the local geologic and geospatial attributes. A model 
capable of incorporating these factors would complement advanced fracture and 
fracture fl ow modeling methods. The data provided by such an approach would 
allow for improved identifi cation of spatial areas at higher risk for communica-
tion between wellbores and geologic networks, and allow for the identifi cation of 
 specifi c regions and wellbores at increased risk for unwanted leakage. Additionally, 

Figure 1 Historical photograph of spatially dense wellbores in TItusville, PA (http://www.
acceity.org/2010/09/oil-in-them-thare-hills/).
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such data would provide critical information needed for fi ner scale study or 
simulation of these spatial extents and wellbores. The data provided by such an 
approach supports a range of cumulative risk reduction and modeling strategies 
due to improved uncertainty constrains regarding subsurface engineered-geologic 
 system characteristics. The information provided by this data is of critical impor-
tance to both industry and regulators. Due diligence for wellbore construction and 
injection plans – as well as monitoring and plugging of wellbores – requires data 
on the relative likelihood of leakage potential in particular areas and through spe-
cifi c wellbores. The model presented in this paper supports these uses.

Because fracture and fracture fl ow models tend to cross into the realm of big 
data, computational effi ciency is an important consideration for the development 
of an integrated method for modeling the relationship between geologic and engi-
neered systems. Traditional geospatial models often require access to fi nancially 
costly methods such as a geographic information system (GIS). Such traditional 
geospatial models tend to be either cell or raster based, and hence potentially 
computationally expensive when applied to big data sets. The developing fi eld of 
graph theory allows for the representation, storage, and manipulation of geospatial 
data in the form of graphs, which can provide improved computational effi ciency 
when certain graph theoretic data structures are employed [13]. Broadly speaking, 
graph theory is a fi eld of mathematics and computer science which involves the 
study of graphs [14]. Graphs are mathematical structures that can represent real 
world data, and may be used to model pairwise relationships between objects. 
A graph structure consists of vertices (sometimes called “nodes”) and edges. Or, 
stated more rigorously, a graph G, consists of two discrete sets, V (vertices) and E 
(edges). The present work specifi cally uses what is called an “undirected graph,” 
in which the elements of E are unordered pairs of vertices. The vertex set of a 
graph G is denoted by V(G), and the edge set as E(G) [13]. Graphs are naturally 
suited for visual representation of spatial relationships: Although the graph struc-
ture itself can be either list or matrix based, graph diagrams – such as the example 
shown in Figure 2 – show how elements in a graph lend themselves to visualiza-
tion. The vertices in a graph can represent almost any type of data (both abstract 
and discrete), and likewise, the edges can represent multiple types of relationships 

Fi gure 2 A drawing of an example graph structure showing vertices (blue circles) and 
edges (orange lines).
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between the vertices. Edges of a graph are often associated with a weight function, 
w(e), that maps each edge e in E to a number. The types of relationships represented 
by the edges and their associated weights can be as simple as Euclidean distance 
[14], or as complex as spatio-temporal interactions in complex networks [15, 16]. 

The graph-based “topological” model presented in this paper (coded in Matlab) 
employs such graph structures in a novel method for characterizing the spatial 
radius of infl uence of induced fractures around a wellbore, and the spatial extents 
potentially at greater risk for unwanted fl uid migration. The algorithm is further 
compared and contrasted to a standard graph-based k-nearest neighbor algorithm, 
to demonstrate the importance of incorporating lithologic factors into induced 
fracture and wellbore connectivity models. The topological model can be used to 
complement existing fracture models to better account for the reach of induced 
fractures around a wellbore, and to identify potentially connected wellbores and 
spatial extents for additional investigation as part of a cumulative strategy to 
reduce uncertainty inherent to combined engineered and geologic systems.

2 Graph-Based Spatial Analysis

The general workfl ow for the model is shown in Figure 3, and referenced and 
described in detail in the forthcoming sections. The model algorithm is coded in 
Matlab and is developed for easy integration with other commercially available 
software.

2.1 Acquire Geologic Data and Defi ne Regional Bounding Lithology

Subsurface geology – particularly deeper lithology and structure – is  impossible 
to accurately characterize. Even with access to expensive geophysical surveys or 
map databases, it is often the case that only limited information on the rock type 
or in situ structural characteristics of strata at certain depth intervals is known 
[17]. However, regional-scale geological databases (maps, surveys, core logs, 

Acquire data

Define input
parameters

Create
vertices

Define topologic
parameters

Generate fracture
propogation volume

Create edges
topologic approach

Create edges
kNN approach Return

graph
analysis

Fig ure 3 Workfl ow for preforming a graph analysis to spatially assess induced fractures.
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stratigraphic columns, or well logs) representing depth-dependent lithology and 
stresses are generally freely available from state agencies [18] and other  public 
sources. The information provided by such resources can provide suffi cient 
 information from which to determine the most geologically brittle and/or over-
stressed lithology in a given region. Such a lithology can be considered to be the 
“ bounding lithology”, or the regional geologic media that provides the physical 
bounding conditions for the maximum fracture radius in that region. Arguably, 
these freely available data sources provide the best information for determining 
the bounding lithology, given the inherent ambiguities in interpretation of geo-
physical surveys (such as gravity or magnetic anomalies). Furthermore, given 
the technological limitations of resolving small scale fractures in geologic media 
(as well as the changes to fracture networks caused by drilling), fi ner scale data 
sources would not necessarily yield much more useful information regarding the 
present state of the geology.

Once the bounding lithology is identifi ed from the map surveys, a range for the 
probable fracture radii can be assigned based off existing literature (Table 1). One 
of the key features of the topological model described in this paper is the adapt-
ability of the analysis for user defi ned needs: Allowing the user to select the range 
of fracture radii based on the bounding lithology and associated values reported 
in Table 1 (or other user defi ned values), gives the model fl exibility for a range of 
geologic conditions.

2.2 Details of the Topological Algorithm

The topological algorithm developed in this model is based on the principle of 
cylindrical intersection. Wellbore point data are treated as graph nodes, and are 
imported by the user. The wellbore points (x, y, z) are converted to graph structure 
by the program. This is accomplished by transforming the geographic coordinates 
of the wellbore data to an orthogonal, earth fi xed frame of reference and Cartesian 
coordinate system, so that curvature effects can be simplifi ed, and Euclidean dis-
tances can be calculated in common units such as meters [19]. Each wellbore node 
has an associated radius of infl uence (r), based on the literature derived bounding 
lithology values (as described in the previous section). The bounding lithology for 
each wellbore is represented as a numeral in the Matlab program (1 for shale, 2 for 
sandstone, etc), and the data array for each wellbore node is tagged with its bound-
ing lithology value (alternatively, this numeral value can be entered manually for 
each wellbore within Matlab, or it can be entered as a user defi ned radius length 

Tab le 1 Literature derived values for the average fracture radii for a bounding 
lithology type [17, 31, 32–34].

Shale Sand

Induced fracture radius (m) 67 113
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value within the program). The bounding lithology represents the most fracture 
prone strata that the wellbore penetrates, and hence approximates the physical 
boundary of the potential fracture reach of a wellbore intersecting that strata. 
Computationally, this is represented as a cylinder’s radius. The model computes 
the associated radius of infl uence around each wellbore node in  3-dimensions. 
This results in a series of fi nite cylinders of radius r, associated with each graph 
node. The algorithm computes the intersection of the cylinders on the graph, and 
when such intersections are identifi ed, an edge is drawn between the originating 
nodes. This edge indicates that these originating wellbore nodes fall within the 
potential fracture reach zone of each other.

2.2.1 Data Acquisition, Conditioning and Quanta

The non-zero graph entries for the topological algorithm are stored in the form of 
a sparse matrix, making storage and manipulation of large data quanta computa-
tionally feasible via compressed sparse row indexing. However, certain practical 
data acquisition and conditioning procedures are necessary to apply the algorithm 
to the geologic and geospatial data that the algorithm is designed for. As described 
in prior sections, it is necessary for the user to have a priori knowledge of the pre-
dominant geologic characteristics in the subsurface. These data should be derived 
from geologic maps, surveys, or well logs. In certain cases – particularly where a 
user is running the algorithm over large spatial extents with multiple wellbores – it 
may be necessary for the user to perform an initial GIS-based analysis overlay-
ing wellbore data with geologic layers to determine the bounding lithology. The 
bounding lithology of each wellbore must then be converted to a numeric repre-
sentation (e.g. “1” for shale, “2” for sandstone), and stored as an element in the 
row associated with the wellbore points, before it is imported for analysis into the 
Matlab program. The topological algorithm is also capable of allowing the user to 
defi ne by hand, both the length of the radius of infl uence around each wellbore, 
or simply select by hand the bounding lithology from the pre-populated values 
within Matlab, when running the algorithm for smaller datasets. 

2.2.2 Details of the k-nearest Neighbor Algorithm

Many traditional geospatial models rely on nearest-neighbor associations to 
assess spatial relationships between geospatial features. For this reason, a stand-
ard k-nearest neighbor algorithm is presented and applied to the same data as the 
topological algorithm, as a means to demonstrate the value added by the latter. 
Details of the knn algorithm can be found in multiple literature sources [20–22]. 
The basic principle behind the knn approach is that the data points (here, well-
bores) exist in a metric feature space. The algorithm is only distance based, and 
does not integrate any information on lithology or wellbore spatial densities. The 
user must defi ne the k, or number of nearest neighbors around each wellbore, and 
the algorithm makes a distance-based selection.
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2.3 The Value of the Topological Approach Algorithm

To demonstrate the value added by the newly developed topological algorithm, 
it is compared and contrasted to the standard knn algorithm. The knn algorithm 
establishes an edge between each node and its k closest neighbors (in Euclidean 
distance) for some user-specifi ed integer k. The topological approach – which is 
the primary output of the method – considers both geologic and topologic rela-
tionships by computing edges based on bounding lithologies and associated 
radii of infl uence. Comparing and contrasting the outputs from two algorithms 
serves to highlight the importance of accounting for subsurface geologic features 
in  representing real world geospatial data in graph form. A real world example is 
demonstrated in the sections below.

3 Real World Applications of the Algorithm

3.1  Bradford Field: Contrasting the Graph-based Approaches; 
k Sensitivity 

Commercial hydrocarbon exploration has been occurring in the Bradford fi eld in 
Pennsylvania since the 1800s [9]. The extensive drilling history in the Bradford 
fi eld results in a high spatial density of wellbores; particularly older “legacy” well-
bores which are likely to be structurally unsound and poorly sealed [1] (Figure 4). 
The model is demonstrated using a synthetic subset of spatially continuous well-
bore data in this region.

3.1.1 Data Sources

The Bradford PA wellbore data used in this analysis were obtained from the 
National Energy Technology Laboratory, United States Department of Energy 
(NETL/DOE), and were part of an aggregated dataset produced using the meth-
odology described by Dilmore et al. [9] and Glosser et al. [1]. Initial data prov-
enance for the dataset includes, aeromagnetic surveys [23], digital databases 
[24, 25], and historical maps and minerals reports [26, 27]. Bounding lithologies 
were determined either by the individual wellbore records (where available), or by 
performing a geospatial overlay of the wellbore locations with a freely available 
geologic map [28].

3.1.2 Results

The two algorithms – the knn algorithm and the topological algorithm, were exe-
cuted on these data. 50 wellbore locations from the Bradford fi eld were subsam-
pled, and associated bounding lithology values for the wellbores were chosen. 
The knn algorithm was run for three nearest neighbor scenarios: k = 1 (Figure 5f); 
k = 2 (Figure 5e); and k = 3 (Figure 5d). For the topological algorithm, the results 
are presented in 3 dimensions with the induced fracture radius of infl uence for 
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Fi gure 5 Representative graph output: Graph representation of wellbore points (n = 50). 
Blue dots represent wellbores (vertices), red lines represent edges, green ellipsoids represent 
radii of infl uence (a) topological approach in 3D; (b) topological approach in 2D form; 
(c) topological approach in 2D form (d) knn approach (k = 3) in 2D form (e) knn approach 
(k = 2); (f) knn approach (k = 1). Graph axes are represented non-dimensionally.

each wellbore (Figure 5a); in 2D form with the radius of infl uence (Figure 5b); 
and in simple graph form showing only the edge connections (Figure 5c). Unlike 
the knn approach – where edges are drawn to each wellbore (node’s) k nearest 
neighbors, in the topological approach, the algorithm draws an edge if and only 
if a wellbore (node) is within the induced fracture radius of infl uence of another 
wellbore (node). That is – if the induced fracture radius of infl uence of wellbore 
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nodes overlap, then an edge is drawn. It is apparent from the results that the knn 
algorithm is, by defi nition, sensitive to the number of neighbors, with the edge 
connections and overall graph connectivity varying greatly based on this value. 
It is further apparent that even when only one nearest neighbor is selected, the 
geometry of the edge connections is considerably different than the geometry of 
the edges in the topologic approach.

3.2  Armstrong PA: Testing the Algorithms Against a Known 
Leakage Scenario

In March 2008, a pressurization of surface casing in a newly drilled oil and gas 
well in Armstrong County, PA resulted in migration of fl uids through two other 
 producing wells [29], mediated by connectivity in the subsurface fracture network. 
Like the Bradford fi eld, Armstrong County has an extensive regional history of oil 
and gas exploration. To test the performance of the graph-based spatial analysis 
on a real world leakage scenario, both the knn algorithm (k = 1) and the  topological 
algorithm were applied to a subset of wellbores near the pressurized well that 
caused the leakage event. 

3.2.1 Data Sources

The leakage event (“Dayton Investigation”) was identifi ed from a Pennsylvania 
Department of Environmental Protection (PADEP) report on oil and gas well 
stray gas cases [29], and the wellbore associated with the event was located in the 
PADEP Offi ce of Oil and Gas Management Compliance Report [30]. A subset of 
77 Armstrong County wells from the NETL/DOE Pennsylvania wellbore dataset 
were spatially selected using ArcGIS, and exported to a .csv fi le for import to the 
Matlab program. 

3.2.2 Results

Both the knn (k = 1) algorithm and the topological algorithm were applied to the 
subset of Armstrong County data. Results are shown in 2D form in Figure 6. Both 
graph-based analyses identifi ed a cluster of wellbores as associated with the leak-
age event: However, the knn algorithm erroneously identifi ed subsurface connec-
tivity between several more wellbores than were reported as being associated with 
the stray gas leakage. Overall, the knn algorithm (A) results in a qualitatively well 
connected graph, suggesting that there is extensive subsurface connectivity in the 
region, even with a k of 1. The wellbore associated with the leakage (black arrow) 
is shown to be connected to at least 6 neighboring wells via overlapping induced 
fracture networks. In contrast, in the topological algorithm (B and C), the graph 
is far less connected; and the affected wellbore is connected to two other affected 
producing wellbores. The topological algorithm also identifi ed three other clusters 
of connected wellbores and fracture networks in the region.
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4 Discussion

The spatial locations of wellbores, as well as the geologic characteristics of the 
reservoir, place physical controls on the formation of induced fractures. Many 
fracture and fracture fl ow models do not honor wellbore locations and related 
engineered fractures; or, they consider only the spatial or geologic attributes of 
the wellbores or reservoir in stochastically generating random fractures. The 
importance of considering both spatial and geologic attributes in identifying 
areas at greater risk for overlapping induced fracture networks is highlighted by 
comparing the topological to a simple distance-based nearest neighbor algorithm. 
Once identifi ed, these regions can be targeted for fi ner scale modelling, and used 
as part of a cumulative modeling strategy to constrain uncertainty in the subsur-
face. The results of the model are also of value as a standalone piece of data for the 
development of science-based wellbore drilling, injection, and risk management 
plans.

As shown in Figure 5, a nearest neighbor approach is by nature sensitive 
to the selected k number of neighbors. The subgraphs produced by the knn 
algorithm contrast considerably from the subgraphs produced by the topologi-
cal approach. In particular, the knn approach suggests far greater connectiv-
ity between nodes than does the topologic approach, particularly when higher 
values of “k” are  chosen. Conversely, when low values of “k” are chosen, sev-
eral potential connections between nodes may be missed, since the algorithm 
chooses the nearest neighbor of a node, and not its range of infl uence on other 
nodes. 

Since the purpose of this model is to identify probable regions of subsurface 
 connectivity – and wellbores and wellbore clusters at greater risk for unwanted 
fl uid migration – the knn approach gives a substantially less accurate represen-
tation of the spatial extents that are likely to contain overlapping induced frac-
ture networks. First – the k is user defi ned, and the algorithm output is greatly 
dependent on the user selection. Second – the knn algorithm does not take into 
account the geologically-based induced fracture radius in drawing edges: This 
results in a connected graph, which is falsely suggestive of subsurface connectiv-
ity, and hence, higher risk for fl uid leakage through the subsurface and through 
wellbores. In neglecting to consider geophysical attributes, knn relies solely on 
wellbore neighborhoods, and not actual induced fracture networks in defi ning 
connectivity.

In contrast, the topological approach considers both geology and wellbore 
 spatial locations in assessing the probability of induced fracture network overlaps. 
Edges are drawn if and only if a wellbore falls within the radius of infl uence of a 
nearby wellbore. Hence, the subgraphs are representative of both geologic and 
wellbore networks, and give a more realistic (and in a sense, more conservative) 
representation of probable connectivity. Furthermore, unlike knn, the topological 
approach is not susceptible to user bias in the selection of neighbors: the algorithm 
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itself automatically identifi es the induced fracture radius and number of associ-
ated connections (edges), based on literature supplied values for lithologic frac-
ture reach. 

When tested against a known leakage scenario, the topological algorithm 
 identifi es two producing wellbores associated with the leakage event (Figure 7b 
and 7c). Although the knn algorithm also identifi es affected wellbores, it also 
falsely identifi es several other nearby wellbores as being connected (Figure 7a). 
In addition, the overall knn graph is qualitatively connected, resulting in a likely 
 erroneous (overly connected) representation of the subsurface induced frac-
ture network connectivity, even with a k value of 1. In contrast, the topologi-
cal algorithm  identifi es 4 clusters of connected wellbores (Figure 7b), including 
the wellbores associated with the leakage event. The overall topological graph is 
qualitatively less connected than the knn graph, and appears to provide a more 
 realistic  representation of the connectivity of wellbores and induced fracture 
networks. The example application serves to highlight the importance of the 

(a) (b)

(c)

Figure 7 (a) Results of knn algorithm on Dayton PA area wellbore (k = 1) (n = 77); (b) Results 
of topological algorithm on Dayton PA wellbores (n = 77); (c) Results of topological 
algorithm on Dayton PA wellbores, zoomed in on wellbores associated with leakage. Black 
arrows point to overpressurized wellbore. All results are shown in 2D form for clearer 
visual representation of results.
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geologic factors in assessing regions with probable natural and engineered fl ow 
pathways. 

4.1 Uses for Industry and Regulators

There is an ongoing need in both industry and regulatory domains for  science-based 
tools from which to develop risk management programs. This is particularly true 
in complex systems such as subsurface geologic systems, especially those impacted 
by hydraulic fracturing. The potential for subsurface leakage through induced 
fracture networks and existing wellbores is a concern to regulators, operators, 
and public stakeholders. The ability to provide better predictive tools for spatial 
regions or wellbores at risk for such events meets a critical need for the develop-
ment of sound risk management strategies. The method presented in this paper 
can provide valuable information to stakeholders, and helps to reduce uncertainty 
inherent to these complex systems.

5 Conclusions

Overlapping induced fracture networks between collocated wellbores may increase 
communication in the subsurface, and create the potential for unwanted fl uid fl ow. 
The generation of induced fractures is greatly dependent upon the structural and 
lithological characteristics of local geology, which is often diffi cult to accurately 
characterize in the absence of costly geophysical surveys. A robust, adaptable 
method for analyzing the spatial regions and wellbores at higher risk for  subsurface 
induced fracture connectivity has been developed and presented. The result pro-
duced by the method is based on geologic data, and provides a sound basis for 
reduction of uncertainty inherent in subsurface systems. It is shown that the 
 topological graph theory algorithm is a potentially powerful tool for rapid charac-
terization of subsurface geospatial data. The topologic graph algorithm has several 
advantages over the knn algorithm: it is not susceptible to user error in the selection 
of a “k”. And, in accounting for geologic factors, it provides a physically based, and 
hence more realistic, assessment of probable subsurface connectivity. The algorithm 
has been successfully demonstrated using a real world leakage scenario. Because 
subsurface modeling efforts tend to occupy the realm of “big data,” the method 
increases modeling effi ciency in two ways: First, the graph structures employed by 
the method allow for rapid computations involving big data sets; and second, the 
method can be used to identify spatial extents at greater risk for induced fracture 
network communication, and hence targeted fracture and fracture fl ow modeling. 
The method output can be transformed back into a geographic coordinate system, 
and/or integrated into existing fracture or fracture fl ow modeling software, as part 
of a cumulative modeling strategy for risk mitigation. The information provided 
by this approach can be used by regulators and industry in developing sound risk 
management plans related to  hydraulic fracturing operations.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43



Deborah Glosser and Jennifer R. Bauer: A Graph Theoretic Approach for Spatial Analysis

16  J. Sustainable Energy Eng.   © 2016 Scrivener Publishing LLC

 

Acknowledgements

This work was completed as part of National Energy Technology Laboratory 
(NETL) research for the Department of Energy’s Complementary Research 
Program under Section 999 of the Energy Policy Act of 2005. This research 
was supported in part by an appointment to the National Energy Technology 
Laboratory Research Participation Program, sponsored by the U.S. Department 
of Energy and administered by the Oak Ridge Institute for Science and 
Education. The authors wish to acknowledge the technical feedback from Kelly 
Rose, Russell Schwartz, Circe Verba, and Grant Bromhal. Deborah also thanks 
her family for their support, with special recognition to Miriam and Michael 
Miller.

References

 1. D. Glosser, K. Rose, and J. Bauer, Spatio-temporal analysis to constrain uncertainty in 
wellbore datasets: an adaptable analytical approach in support of science-based deci-
sion making. Journal of Sustainable Energy Engineering, in press (2016).

 2. State Oil and Gas Groundwater Investigations and Their Role in Advancing Regulatory 
Reforms a Two-State Review: Ohio and Texas, Groundwater Protection Council (2011).

 3. K.M Keranen, H.M. Savage, G.A. Abers, and E.S. Cochran, Potentially induced earth-
quakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 
earthquake sequence. Geology 41(6), 699–702 (2013).

 4. D. Soeder, S. Sharma, N. Pekney, L. Hopkinson R. Dilmore, B. Kutchko, et al., An 
approach for assessing engineering risk from shale gas wells in the United States. In 
International Journal of Coal Geology, Special Issue: Unconventional Natural Gas and 
the Environment (2014) (in press). 

 5. W. Ellsworth, Injection induced earthquakes. Science. 341(6142), 1225942 (2013).
 6. J. A. Montague and G. F. Pinder, Potential of hydraulically induced fractures to commu-

nicate with existing wellbores. Water Resources Research 51(10), 8303–8315 (2015).
 7. M. TIngay, J. Reinicker, and B. Muller, Borehole breakout and drilling-induced fracture 

analysis from image logs. World Stress Map Project (2008).
 8. M. D. Zoback, D. Moos, and L. Mastin, Well Bore Breakouts and in Situ Stress, J. Geophys. 

Res., USGS Staff Published Paper, 90, B7, pp. 5523–5530 (1985).
 9. R.M Dilmore, J.I. Sams, D.B. Glosser, and K.M. Carter, Spatial and temporal charac-

teristics of historical oil and gas wells in Pennsylvania: implications for new shale gas 
resources. Environmental Science and Technology 49, 12015–12023 (2015).

10. National Energy Technology Laboratory, FracGen and NNFlow software v. 14.9, https://
edx.netl.doe.gov/dataset/fracgen-and-nffl ow-version-14-9 accessed 4/11/2016.

11. P. Valko and M.J. Economides, Propagation of Hydraulically Induced Fractures – A 
Continuum Damage Mechanics Approach. International Journal of Rock Mechanics, 
Mineral Science, and Geochemistry 31(3) 221–229 (1994).

12. C. Zeeb, E. Gomez-Rivez, P. Bons, S. Virgo, and P. Blum, Fracture network evaluation 
program (FraNEP): A software for analyzing 2D fracture trace-line maps. Computers and 
Geoscience 60, 11–22 (2013).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Exeter
Highlight
It looks the reference year should match "1985" instead "1980".

DBG: That is correct thank you



Deborah Glosser and Jennifer R. Bauer: A Graph Theoretic Approach for Spatial Analysis

J. Sustainable Energy Eng.   © 2016 Scrivener Publishing LLC  17

 

13. J. Pach, Geometric Graph Theory, Mathematical Institute of Hungarian Academy of Sciences, 
http://dcg.epfl .ch/page-117408-en.html accessed 4/11/2016.

14. L. D. Cohen and R. Kimmel, Global minimum for active contour models: A  minimal 
path approach. International Journal of Computer Vision 24(1), 57–78 (1997).

15. J. Pereira-Leal, A. Enright, and C. Ouzounis. Detection of functional modules from protein 
interaction networks. PROTEINS: Structure, Function and Bioinformatics 54, 49–57 (2004).

16. S. Yook, Z. Oltvai, and A. Barabasi, Functional and topological characterization of pro-
tein interaction networks. Proteomics 4, 928–942 (2004).

17. M. Alizadeh, Z. Movahed, R. Junin, R. Mohsin, M. Alizadeh, and M. Alizadeh, Finding 
the Drilling Induced Fractures and Borehole Breakouts Using Image Logs. Journal of 
Advanced Research 10(1), 9–30 (2015).

18. West Virginia Geologic and Environmental Survey, Interactive Mapping http://ims
.wvgs.wvnet.edu/index.html (2015).

19. N.-N.G. Intellingence Agency of EUA, World Geodetic System 1984, WGS-84. p. 3 (1984).
20. W. Dong, C. Moses, and K. Li, Effi cient k-nearest neighbor graph construction for 

generic similarity measures. WWW 577–586 (2011).
21. V. Garcia, E. Debreuve, and M. Barlaud, Fast k nearest neighbor search using GPU. 2008 

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2, 1–6 (2008).
22. Y. P. Mack and M. Rosenblatt, Multivariate k-nearest neighbor density estimates. 

J. Multivar. Anal. 9(1), 1–15 (1979).
23. R. Hammack, G. Veloski, and J. Sams, Rapid Methods for Locating Existing 

Well Penetrations in Unconventional Well Development Areas of Pennsylvania, 
Unconventional Resources Technology Conference, 20–22 July, San Antonio, SPE-
178558-MS (2015).

24. PA DCNR. The Pennsylvania Internet Record Imaging System/Wells Information 
System (PA*IRIS/WIS): Gateway to Detailed Oil and Gas Well Information Data http://
www.pairis.state.pa.us accessed during 2013.

25. Pennsylvania Spatial Data Access Center, Oil and Gas Wells in Pennsylvania, http://
www.pasda.psu.edu/ accessed during 2013.

26. R. Arnold and W.J. Kemnitzer, Petroleum in the United States and possessions: a pres-
entation and interpretation of the salient data of geology, technology, and economics 
of petroleum in each state and possession treated according to the conventional major 
fi eld divisions; Harper & brothers (1931).

27. US Geological Survey. Minerals Yearbook Digital Collection http://digital.library.wisc
.edu/1711.dl/EcoNatRes.MineralsYearBk.

28. Pennsylvania Spatial Data Access Center, Geology of Pennsylvania, http://www
.pasda.psu.edu/ accessed during 2015.

29. Department of Environmental Protection, Stray Natural Gas Migration Associated with 
Oil and Gas Wells http://www.dep.state.pa.us/dep/subject/advcoun/oil_gas/2009/
Stray%20Gas%20Migration%20Cases.pdf Accessed during 2016.

30. DEP Offi ce of Oil and Gas Management Compliance Report, inspection ID 1692786 
http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.
aspx?/Oil_Gas/OG_Compliance accessed during 2016.

31. M. Brudy and M.D. Zoback, Drilling induced tensile well fractures: implications for 
determination of in situ stress orientation and magnitude. International Journal of Rock 
Mechanics and Mining Sciences 36, 191–215 (1999).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43



Deborah Glosser and Jennifer R. Bauer: A Graph Theoretic Approach for Spatial Analysis

18  J. Sustainable Energy Eng.   © 2016 Scrivener Publishing LLC

 

32. J.R. de Druezy, P. Davy, and O. Bour, Hydraulic properties of two dimensional random 
fracture networks following a power law length distribution. Water Resources Research 
37(8), 2065–2078 (2001).

33. N.E. Odling, Scaling and connectivity of joint systems in sandstones from western 
Norway. J. Struct. Geol. 19, 1257–1271 (1997).

34. O. Bour and P. Davy, Connectivity of random fault networks following a power law 
fault length distribution. Water Resour. Res. 33, 1567–1583 (1997).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


